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Abstract. We show that the nearest-neighbour correlations of the honeycomb, triangular 
and square Ising models can be obtained by using only the star-triangle relPtions and simple 
assumptions concerning the thermodynamic limit and differentiability. This gives the 
internal energy, and hence the free energy and specific heat. 

1. Introduction 

Since the original solution of the two-dimensional Ising model by Onsager (1944), 
many alternative derivations have been given. Onsager diagonalised the transfer 
matrix by looking for irreducible representations of a related matrix algebra; Kaufman 
(1949) simplified this derivation by using spinor operators; Schultz et a1 (1964), and 
Thompson (1965), further simplified it by using fermion operators. 

Kac and Ward (1952) used combinatorial arguments to write the partition function 
as a determinant. This method was refined by Potts and Ward (1955). 

Hurst and Green (1960), and Kasteleyn (1963) also used combinatorial arguments, 
but this time to write the partition function as a Pfaffian. Another combinatorial 
solution was obtained by Vdovichenko (1965), and is given by Landau and Lifschitz 
(1968). A full account of the Pfaffian method and the properties of the Ising model is 
given by McCoy and Wu (1973). 

More recently, the Ising model has been solved by making use of the commutation 
properties of the transfer matrix (Baxter 1972, Stephen and Mittag 1972). 

In this paper we give a new derivation of the solution. We believe it to be the 
simplest yet, since it involves only a local property of the king model, namely the 
star-triangle relation, together with some straightforward assumptions concerning the 
thermodynamic limit and differentiability. It does not involve transfer matrices or 
combinatorial arguments. 

The derivation rests on two ideas, which have previously been used by the two of us, 
respectively (Baxter 1978, Enting 1977). 

The first idea was developed for the eight-vertex model. Its specialisation to the 
Ising model is given in § 2. By repeated use of the star-triangle transformation it is 
shown that each nearest-, or next-nearest-, neighbour correlation on a large anisotropic 
honeycomb lattice is the same as a nearest-neighbour correlation on a related square 
lattice. This means that each is a function of only two parameters (the square lattice 
interaction coefficients), instead of three. 

The second idea is used in § 3. By considering a single star, a linear relation is 
obtained between the first and second-neighbour correlations of the honeycomb lattice. 
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2464 R J Baxter and I G Enting 

These two results are combined in 9 4  to give a functional equation for these 
correlations. The general solution of this equation is obtained in Q 5. It still contains a 
single unknown function of one variable. This function is obtained in P O  6 and 7 by 
using the rotation symmetry of the free energy. 

The first idea has been implicit in the literature for some years. It is connected with 
the commutation properties of the transfer matrix. Onsager (1971) was well aware of 
the connection between these and the star-triangle relation. What we do believe to be 
new is the simple derivation of the first result and the wedding of it to the second to 
obtain the correlations. 

Once these correlations are known as functions of the interaction coefficients, the 
free energy can of course be obtained by integration. Thus in one fell swoop we have 
solved the honeycomb, triangular and square Ising models. 

These ideas can probably be extended to the eight-vertex model. It is intended to 
attempt this, using the Ashkin-Teller formulation (Wu 1977). Indeed, they probably 
apply to any model that satisfies a star-triangle relation, for instance the critical Potts 
model (Baxter et a1 1978). 

2. The honeycomb lattice correlations as square lattice ones 

Consider an anisotropic Ising model on the honeycomb lattice. At each site i there is a 
spin U,, with values +l  or -1. The interaction energy between adjacent spins U, ,  is 
-kBTLp,a,, where k B  is Boltzmann’s constant, T the temperature, and r takes the 
values 1 ,2 ,  3 according to the direction in which edge (i, 1 )  lies, as indicated in figure 1. 
Thus there are three interaction coefficients: L 1 ,  L z ,  L 3 .  

The star-triangle relation is well-known (Wannier 1945, Houtappel, 1950): by 
summing over the spin at site 1 one can convert the star i i k 1 (full lines) to the triangle 
i j k (dotted lines), with interaction coefficients K 1 ,  K z ,  K3 on the dotted edges. 

The K, are related to the L, by 

and two other equations obtained by permuting the suffixes 1 ,2 ,3 .  If L1,  L2 ,  L3 are all 

Figure 1. A star on the honeycomb lattice and 
its associated (dotted) triangle. The inter- 
action coefficients for the various edges are 
shown. 
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real (positive), then so are K1,  K2, K3.  If K1, K2,  K3 are positive, then L 1 ,  L2 ,  L3 can all 
be chosen positive. 

Conversely, one can convert a triangle, with coefficients K 1 ,  K2, K3,  to a star, with 
coefficients L1, L2, L3. 

There are two sorts of star on the honeycomb lattice: down-pointing ones (e.g. 
i j k l ) ,  and up-pointing ones (e.g. the one with centre site i ) .  By applying the 
star-to-triangle transformation to all down-pointing (or all up-pointing) stars, one 
converts the honeycomb Ising model to a triangular one with interaction coefficients K 1 ,  
K2, K3. 

Now let us do something slightly different. Consider the honeycomb lattice shown 
in figure 2(a)  by full lines. Let R be the central row of vertical edges, containing sites 
i, j ,  m, n. Suppose the lattice to be wound on a vertical cylinder, so the right side is 
joined to the left. Proceed as follows. 

R 

I b l  

R 

I C )  

Figure 2. The effect of repeated star-to-triangle and triangle-to-star transformations on the 
honeycomb lattice. 

(i) Perform a star-to-triangle transformation by summing over the centre spins of all 
up-pointing three-edge stars above R, and of all down-pointing three-edge stars below 
R. 

This leaves the spins at sites i, j ,  m, n unaffected. It converts the model to one on the 
lattice consisting of the dotted lines in figure 2(a) ,  the full vertical lines in row R, and the 
full non-vertical lines at the top and bottom boundaries. Parallel edges have the same 
interaction coefficient, being the same as that of the edge to which they are parallel in 
figure 1. 

This new mixed lattice contains triangular regions above and below R. The next 
step is 

(ii) Perform a triangle-to-star transformation on down-pointing triangles above R, 
up-pointing triangles below R. 

This continues to leave unchanged the spins at sites i, j ,  m, n, but takes the model to 
one on the lattice shown in figure 2(b).  Note that it contains a central square-lattice 
band including R. There are honeycomb regions above and below this band. 
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Now repeat steps (i) and (ii), and continue until there are no appropriate three-edge 
stars or triangles to transform. The result is the lattice shown in figure 2(c). It contains a 
central square lattice region, with interaction coefficient L3 for all vertical edges, K3 for 
all horizontal ones. Above and below this are regions with non-square quadrilateral 
faces and coefficients L1, Lz ,  K1, KZ for the various edges. 

In the thermodynamic limit the original honeycomb lattice is large, and so is the 
square-lattice region of figure 2 ( c ) .  Although the kite-shaped regions beyond this are 
also large, they affect the square region only via its boundary spins. They are therefore 
equivalent to some special boundary condition on the square region. Since L1, L z ,  K1, 
K z  are all real, this boundary condition only introduces positive weights, and in the 
thermodynamic limit it cannot affect even-spin correlations deep within the square 
region. 

The two-spin correlations between ai, a,, U,,,, U" must therefore be those of the 
square lattice. In particular, it must be true that 

where g(K,  L )  is the horizontal nearest-neighbour correlation of a square lattice with 
interaction coefficients K and L on horizontal and vertical edges, respectively. 

Thus we have reduced these second- and first-neighbour correlations of the 
honeycomb lattice from functions of the three variables L1, La, L3 to functions of the 
two variables K3, L3. 

3. Local relation between honeycomb first and second-neighbour correlations 

Again consider the star shown in figure 1. Let P(a, /?, y )  be the probability that the 
spins at sites i, j ,  k have values a, p, y (this probability is obtained in the usual way by 
summing 2-' exp(-%/kBT) over all spins other than those at i, 1, k). Let P(a, @, y, 8) 
be the corresponding probability for sites i, j ,  k, 1. Then 

P(a,  P, Y? 6) = & / a ,  P, y)P(a,  P, r) (3 ) 
where P(Sla, p, y )  is the probability that the spin at 1 has value 6, given that the spins at 
i, j ,  k have values a,  p, y. However, if the spins at i, j ,  k are fixed, then the spin at 1 is 
isolated from the rest of the honeycomb lattice. Effectively it sees only a 'magnetic field' 
(LILY +LzP + L ~ Y ) ~ B T ,  SO 

P(S/a ,  p, y)=; [ l+S tanh(Lla +LzP +L3y)]. (4 1 

P(SIa,P,  Y > = I [ 1 + S ( W , ~  + W 2 P + W 3 Y - - W ~ P Y ) l .  (5  1 

Since a, p, y are either +1 or -1, equation (4) can be written as 

The coefficients w, w1, w2, w3 can be obtained from equations (4) and (5) by 
multiplying by apyS, aS, pS, yS, respectively, and summing over a,  p, y, S .  Doing this 
and then using the star-triangle relations (l), one finds after some straightforward 
algebra that 

w = sinh 2K1 sinh 2Kzlsinh 2L3 (6a 1 
(6b 1 r = 1, 2 ,  3. w,/w = coth 2Kr 
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Now substitute the expression (5) for P(SIa, @, y )  into equation (3), multiply both 
sides by y8, and sum over CY, p, y, 8 = * 1. Since a ,  @, y ,  8 are  the values of the spins a), 
a,, ak, a[, respectively, it follows that 

(7) t  ( u k  a[)  = w l ( a ,  ak) + aw2(Uj uk) + w3 - w ( a !  ai ). 

This is a linear relation between first and second-neighbour correlations on  the 
honeycomb lattice. 

4. Functional equation for the correlations 

Now we combine our results (2 )  and (7) .  Using also the symmetric analogues of (2), (7) 
becomes 

g(L3, K3)' wig(K2, Ld+Liwzg(Ki ,  L i ) +  ~ 3 - ~ g ( K 3 ,  L3). (8) 

We  can regard K1, K 2 ,  K 3  as independent variables, L 1 ,  L2, L3 being defined by 
equation (1). Thus equation (8) is a three-variable relation for the two-variable 
function g(K, L ) .  W e  shall show that it determines g(K, L )  almost completely. 

By negating spins on  alternate rows o r  columns of the square lattice, it is readily 
found that 

g(K,  L ) =  -g(-K, L ) = g ( K ,  -L )=  -g(-K, -L) .  (9 1 
Thus it is sufficient to obtain g(K,  L )  for positive K, L .  From now on  we therefore 
consider only the case when K 1 ,  K2, K3, L 1 ,  L2, L3 are all positive. 

Instead of the two-variable function g(K,  L ) ,  it is convenient to use a function 
f ( K ,  k ) ,  defined in terms of g(K,  L )  by 

g(K,  L )  = coth 2K f(K3 k ) ,  
k = (sinh 2K sinh 2L)- ' .  

W e  shall call K the argument of f ( K ,  k ) ,  and k the modulus. 
Eliminating L 1  and L 2  between the star-triangle relations (l), one  can establish that 

cosh 2K1 cosh 2K2 sinh 2K3+sinh 2K1 sinh 2K2 cosh 2K3 

= sinh 2K3 cosh 2L3. 

Also, eliminating K 1  and L 1 ,  or K 2  and L2 ,  between the relations (1) gives 

sinh 2K,  sinh 2L1 = sinh 2K2 sinh 2Lz = sinh 2K3 sinh 2L3. (12)  

Substituting the  expression (loa) for g into equation (8), the function f occurs four 
times. Its argument is different in each case, but from equations ( l o b )  and (12) its 
modulus is the same. Using equations (6)  and (1 l), the resulting equation can be written 
quite neatly as 

k-'b sech 2K1 sech 2K2 sech 2K3 = f ( K 1 ,  k ) + f ( K 2 ,  k ) +  f ( K 3 ,  k ) -  1 (13a) 

+ Note added in proof. The linear relation ( 7 )  between correlations was obtained by Fisher M E 1959 ('nis 
equation 81). Very recently, the star-triangle relation has been used to obtain the critical properties of the 
two-dimensional Ising model via the renormalisation group (Hilhorst H J, Schick M and van Leeuwen J M J 
1978). 
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where 

b =coth 2K3 coth 2L3[f(K3, k ) + f ( L 3 ,  k ) -  11 

k - ’  = sinh 2Kr sinh 2L, 

(13b) 

and k-’  has the common value of the expressions in equation (12), i.e. 

r = 1, 2, 3. (14) 

Eliminating L3 between equations (1 1) and (14) gives an expression for k in terms of 
the triangular lattice interaction coefficients K1, K 2 ,  K 3 ,  namely 

where 

U, = tanh K, r = 1 ,2 ,  3. 

Thus k is the parameter that occurs in previous solutions of the triangular Ising model 
(Green 1963, Stephenson 1964). 

To recapitulate: equation (13) must be true for all positive K1, K 2 ,  K 3 ;  k is given by 
equation (15); L3 by equation (14) or (equivalently) equation (11). We wish to solve 
equation (13) for the function f ( K ,  k). 

5. Solution of the functional equation 

From equation (14), L3 is a function only of K3 and k. From (13b), b is therefore also a 
function only of K 3  and k, and this can be exhibited explicitly by writing it  as b(K3, k ) .  

On the other hand, from (13a) it is obvious that b is a symmetric function of K1, K 2 ,  
K3 .  Since k is also symmetric, this implies in particular that 

b(K2, k ) = b ( K 3 ,  k ) .  (16) 

However, for given values of K3 and k ,  it is still possible to vary K z .  Thus b(K, k )  must 
be independent of the value of its argument, i.e. 

b(K, k )  = b(k ) .  (17) 

For given k, b is therefore fixed. 
(Strictly, we should consider the allowed ranges of K2 and K 3 .  The discussion in § 2 

is valid if K1,  K2, K 3  are all non-negative real. With this restriction, equation (16) 
implies that equation (17) must hold for all non-negative values of K.) 

Now differentiate (13a) along a line in ( K l ,  K2, K 3 )  space on which K 3  and k ,  and 
hence L3, are fixed. The equation (1 1) can be used to relate the infinitesimal increments 
in K 1  and K2, and its symmetric analogues can be used to simplify the result. Doing this, 
the derivative of equation (13a) can be written 

~ ( K I ,  k ) = a ( K 2 ,  k )  

where, for r = 1 or 2 ,  

a(K,, k )  = b ( k )  tanh’ 2Kr ++ coth 2L,f’(Kr,  k )  

f’(K, k )  being the derivative of f ( K ,  k )  with respect to K. 
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Just as equation (16)  implies equation (17),  so does equation ( 1 8 )  imply that a ( K ,  k )  
is independent of K,  i.e. 

a(K ,  k ) =  a@).  (20)  

Using equations (14),  (19) therefore gives a formula for the derivative off,  namely 

a ( k ) - b ( k )  tanh2 2K 
(1 + k 2  sinh2 2K)”2 ’ 

f ’ (K,  k )  = 2 

Since the correlation g(K,  K ’ )  is bounded, the definition (10)  implies that 
f(0, k )  = 0. Integrating (21)  therefore gives, for 0 G K < CO, 

f ( K ,  k ) = a ( k ) A ( K ,  k ) - b ( k ) B ( K ,  k )  (22a)  

where 

tanh2 x dx 2 K  

+ k 2  sinh’ x) l l2  

For given k,  f is therefore a linear combination of the functions A ( K ,  k ) ,  B ( K ,  k ) .  These 
functions can be expressed in terms of incomplete elliptic integrals: various such 
formulae are given in the appendix. 

Since Lj +CO when K 3  + 0 for fixed k,  from equations (13b)  and (17) it follows that 
f (m, k ) =  1. From (22a)  this implies that a ( k )  and b ( k )  satisfy the linear relation 

~ ( k ) A ( w ,  k ) - b ( k ) B ( W ,  k ) =  1. (23)  

Using this, one can verify that the functional relation (13) is satisfied by the solution 
(22),  so we have extracted as much information from it  as possible. It only remains to 
calculate either of the single-variable functions a ( k )  or b ( k ) .  

6. Differential equations for a(k), b ( k )  

To determine a ( k )  and b ( k ) ,  we note that 

where kBT@ is the free energy per site of a square lattice Ising model with interaction 
coefficients K and L for horizontal and vertical edges, respectively. This @(K,  L )  must 
be a symmetric function of K and L. Differentiating equation (24)  with respect to L and 
using the definition (lo), it follows that the function f ( K ,  k )  must satisfy the symmetry 
relation 

( 2 5 )  

The f(L, k )  on the RHS of equation ( 2 5 )  can be expressed in terms of f (K,  k )  by using 
(13b), with the suffix 3 deleted. Doing this, and using (lob),  (17) and (21), the relation 
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(25) becomes 

k , - = $ [ ~ ( k ) - b ( k ) + k b ‘ ( k ) ] C ( K ,  Jf(Kt k )  k )  
d K  

where 

On the LHS of equation (26), and from now on, differentiation with respect to k is to be 
understood as being performed for fixed K ;  a ’ ( k )  and b ‘ ( k )  are the derivatives of a ( k )  
and b ( k ) .  

The functions A ( K ,  k )  and B ( K ,  k )  defined by (226) and (22c) are analytic for all 
positive K and k .  Setting 

k t 2 =  1 - k 2  (28) 

they satisfy the following differential equations: 

d 
k - A ( K ,  k ) = B ( K ,  k ) - A ( K ,  k ) + C ( K ,  k )  

k - [ k ” B ( K ,  k ) ]  = k ” B ( K ,  k ) - A ( K ,  k ) +  C ( K ,  k ) .  

(29a 1 

(29b) 

ak 

a 
ak 

(These identities can readily be verified by differentiation with respect to K.) 
Substituting the expression (22a) for f ( K ,  k )  into (26) and using (29), (26) becomes 

[ - k b ’ + a  - ( 1 + k 2 ) c ] [ B ( K ,  k ) + i C ( K ,  k ) ] + ( k a ’ - a  + c ) A ( K ,  k ) = O  (30) 

where 

c = c ( k ) = b ( k ) / k I 2 .  (31) 

For given k,  the functions A ( K ,  k ) ,  B(K,  k ) ,  C(K,  k )  are linearly independent, so the 
relation (30) implies that 

k a t =  a - c  

kb‘ = a - (1 + k2)C.  

Eliminating a and b between (31) and (32) gives 

d dc -( kk” -) - kc = 0. 
dk d k  (33) 

This is a second-order homogeneous linear differential equation for c ( k ) .  Once c ( k )  is 
known, b ( k )  and a ( k )  can be obtained from equations (31) and (32b). 

7. Final determination of the correlations 

The above equations apply to all positive values of k .  However, the differential 
equation (33) is singular at k = 1, so we must consider the cases k < 1 and k > 1 
separately. 
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7.1. Low-temperature case: k < 1 

Let X ( k ) ,  E ( k )  be the complete elliptic integrals of the first and second kinds, of 
modulus k (Gradshteyn and Ryzhik 1965, hereinafter referred to as G R ,  § 8.112). For 
k < 1 both X ( k )  and X ( k ’ )  are solutions of (33) (GR § 8.124.1), so the general solution 
is 

c ( k ) =  A X ( k ) + p X ( k ’ ) ,  (34) 

where A ,  p are constants. 
As k + O ,  X ( k ) +  77/2 while X ( k ’ ) +  CO. If p f 0, it follows from equations (31), (32), 

and (22) that a ( k ) ,  b ( k )  and f ( K ,  k) become infinite (for fixed K ) .  However, from 
equations (2) and (lo), 1 f ( K ,  k ) l <  1, so f is bounded. This means that p must be zero. 

From equations (31), (32) and G R  § 8.123.2, it follows that 

a ( k )  = AE(k)  b ( k )  = A / c ‘ ~ X ( ~ ) .  (35) 

A ( W ,  k ) = X ( k ’ ) ,  B(m, k ) =  [ Y L ( k ’ ) - E ( k ‘ ) ] / k J 2 .  

Changing the integration variable x in (22) to a ,  where tan a = sinh x, it is found that 

(36) 

The  constant A can now be evaluated by substituting the expressions (35) and (36) 
into the condition (23). Using the identity (GR § 8.122) 

E ( k  ) X ( k ’ )  + E (  k ‘ ) X ( k  ) - YL(k )X(k  ‘) = ;T, 

we find that 

A = 2 / ~ .  

7.2. High-temperature case: k > 1 

In this case the general solution of equation (33) is 

c ( k ) =  l[AYL(/)+ px(1’)] (39) 

1 = k-‘ 

where A ,  p are constants (not necessarily the same as those in equation (34)). and 

(40) 1‘ = (1 - 1 2 ) ” 2 .  

As k +CO,  YL(l)+ 7712 and X(l’)+ 00. If p # 0 it follows from equations (31), (32) 
and (22) that f (K,  ~ ) + c o  for fixed K.  Since this is not allowed, p must again be zero. 
Equations (31) and (32) then give 

a (k) = A [ E ( / ) -  l’2YL(/)]/1 
b ( k )  = -Al f2X(1)/ l .  

Changing the integration variable in (22) to a ,  where tan a = k sinh x, gives 

A ( a ,  k) = lX(1’) 

B(co, k)= l [E( l ‘ ) -  12Yl(l’)]/1’2 

Substituting (41) and (42) into (23) and using the identity (37) with k replaced by I ,  we 
again find that A = 2/77. Thus A ,  p in equation (39) do  in fact have the same values as in 
equation (34). 



2472 R J Baxter and I G Enting 

8. Summary 

The elliptic integrals of moduli k ,  k - ’  are related by a Landen transformation 
(GR § 8.126) to those of modulus 

k ,  = 2k’”/(1 + k ) .  (43) 

Using this, the above results for a ( k ) ,  b(k) can be written in the single form, true for all 
positive k, 

Together with equations ( 2 ) ,  (10) and (ZZ), this gives the nearest-neighbour correlations 
of the honeycomb, triangular and square Ising models. 

One interesting feature of this derivation is that it makes it very clear how the 
non-analyticity at the critical point k = 1 occurs. Eliminating a ( k )  between equations 
(22a) and (23) gives 

All the functions and ratios on the RHS are analytic at k = 1, except for the single 
‘coefficient’ b(k). This is independent of K, so all honeycomb, triangular and square 
Ising models have the same singularity in their internal energy, namely that of b(k). At 
k = 1, b ( k )  is continuous but non-analytic, being given near k = 1, by 

b (k )=  ~ ~ ‘ ( 1 -  k2 )  ln[16/11- k2/] .  (46) 

The symmetric logarithmic divergence of the specific heat follows from equation (46). 
The result (22) and (44) for f ( K ,  k )  can be written very neatly in terms of elliptic 

functions. This is done in the appendix. We have verified that the result is the same as 
that of Onsager (1944, equations ( 1 1 3 ~ )  and (A5.1)). 

Appendix 

Define K* ,  8, 4, A by 

sinh 2 K *  = k tan 8 =tan  4 = k sinh 2K 

A =  tanh 2 K ( 1 +  k’ sinh2 2K)’”. 

Let F, E be the incomplete elliptic integrals (GR § 8.11 1). Then, using equations 
(221, (271, (28) and (401, 

A(K, k )  = -iF(2iK, k )  = -iIF(2iK*, I )  = F(0,  k ‘ )  = lF(4 ,  I f )  (‘43) 
k”B(K, k ) =  -A-iE(2iK, k )  

= -A - i[E(2iK*, I)- I”F(2iK*, I ) ] / /  

=F(8 ,  k’)-E(O, k’) 
= -k‘*C(K,  k ) -  [E(4 ,  f’)- I’F(4, I’)]/I, 
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The function f ( K ,  k) can be expressed in terms of the elliptic theta functions HI, O1 
and their derivatives H ; ,  0; (GR 00 8.191 and 8.192): 

k < 1: -i sn(ia, k) = sinh 2K, 0 < a < X ( k ’ )  

2iX(k) Hi (ia, k) 
T Hl(ia,  k) fW, k) = ~ 

k > 1 : -i 1 sn(ia, I )  = sinh 2K, 0 < a < .X(I’) 

2iX(I) O;(ia, I )  
f ( K ,  k)=- -. 

7~ Ol(ia, 1 )  

This parameter a is not that used in the text: it is that used by Onsager (1944, A2.2). 

References 

Baxter R J 1972 Ann.  Phys., NY 70 193-228 
- 1978 Phil. Trans. R.  Soc. 289 3 1 5 4 6  
Baxter R J, Temperley H N V and Ashley S E 1978 Proc. R. Soc. A 358 535-59 
Enting I G 1977 J.  Phys. A :  Math. Gen. 10 1 7 3 7 4 3  
Fisher M E 1959 Phys. Reo. 113 969-81 
Gradshteyn I S and Ryzhik I M 1965 Table OjIntegrals, Series and Products (New York: Academic Press) 
Green H S 1963 2. Phys. 171 129-48 
Hilhorst H J, Schick M and von Leeuwen J M J 1978 Phys. Reo. Lett. 40 1605-8 
Hurst C A and Green H S 1960 J. Chem. Phys. 33 1059-62 
Houtappel R M F 1950 Physica 16 425-55 
Kac M and Ward J C 1952 Phys. Rec. 88 1332-7 
Kasteleyn P W 1963 J.  Math. Phys. 4 287-93 
Kaufman B 1949 Phys. Rev. 76 1 2 3 2 4 3  
Landau L D and Lifschitz E M 1968 Statistical Physics (Oxford: Pergamon) 
McCoy B M and Wu T T 1973 The Two-Dimensional Ising Model (Harvard: Harvard University Press) 
Onsager L 1944 Phys. Reo. 65 1 1 7 4 9  
- 1971 Critical Phenomena in Alloys, Magnets and Superconductors eds R E Mills, E Ascher and 

Potts R B and Ward J C 1955 Prog. Theor. Phys. 13 3 8 4 6  
Schultz T D, Mattis D C and Lieb E H 1964 Rev. Mod. Phys. 36 856-71 
Stephen M J and Mittag L 1972 J.  Math. Phys. 13 1944-51 
Stephenson J 1964 J.  Math. Phys. 5 1009-24 
Thompson C J 1965 J.  Math. Phys. 6 1392-5 
Vdovichenko N V 1965 Sov. Phys.-JETP 21 350-2 
Wannier G H 1945 Rev. Mod. Phys. 17 50-60 
Wu F Y 1977 J. Math. Phys. 18 61 1-3 

R I Jaffee (New York: McGraw-Hill) 


